Proteomic analysis of the rat cerebellar flocculus during vestibular compensation.
نویسندگان
چکیده
Unilateral labyrinthectomy (UL) in rats is used as a human vertigo model. In this model, spontaneous nystagmus and dysequilibrium caused by UL are ameliorated within 48-72 hours. The amelioration, termed vestibular compensation (VC), is long lasting. Although cerebellar flocculi have been reported to be involved in VC, the molecular mechanisms behind VC are unknown. In this study, we used 2D-DIGE to detect protein changes in flocculi during acute (48 hours) and chronic (1 week) stages of VC. We found 99 out of 967 protein spots that showed significant changes in their intensities. Of the 99 spots, 45 spots (ipsilateral side, 15; contralateral side, 30) changed unilaterally during the acute stage, whereas 46 spots (ipsilateral side, 21; contralateral side, 25) changed unilaterally during the chronic stage. Thus, the acute compensation mechanism is more complicated in the contralateral flocculus than in the ipsilateral flocculus. Using MALDI-TOF MS, we identified 10 proteins out of the 12 protein spots. Of these, 3 proteins involved in synaptic transmission, neuronal filament formation and vesicular transport, respectively, demonstrated altered expression only in the acute stage. Our results enhance the understanding of the role of the cerebellar flocculi in VC generation.
منابع مشابه
Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat.
We investigated the role of the cerebellar flocculus in mediating the adaptive changes that occur in the intrinsic properties of brainstem medial vestibular nucleus (MVN) neurons during vestibular compensation. Ipsi-lesional, but not contra-lesional, flocculectomy prevented the compensatory increase in intrinsic excitability (CIE) that normally occurs in the de-afferented MVN neurons within 4 h...
متن کاملChanges in Histamine Receptors (H1, H2, and H3) Expression in Rat Medial Vestibular Nucleus and Flocculus after Unilateral Labyrinthectomy: Histamine Receptors in Vestibular Compensation
Vestibular compensation is the process of behavioral recovery following peripheral vestibular lesion. In clinics, the histaminergic medicine is the most widely prescribed for the treatment of vertigo and motion sickness, however, the molecular mechanisms by which histamine modulates vestibular function remain unclear. During recovery from the lesion, the modulation of histamine receptors in the...
متن کاملThe Changes in mGluR2 and mGluR7 Expression in Rat Medial Vestibular Nucleus and Flocculus Following Unilateral Labyrinthectomy
It is known that the medial vestibular nucleus (MVN) and the cerebellar flocculus are the key areas, which contribute to the behavioral recovery ("vestibular compensation") after unilateral labyrinthectomy (UL). In these areas, how the genetic activities of the metabotropic glutamate receptors mGluR2 and mGluR7 performance after UL is unknown. With the means of quantitative real-time PCR, Weste...
متن کاملTransient changes in flocculonodular lobe protein kinase C expression during vestibular compensation.
Protein kinase C (PKC) is a family of intracellular signal transduction enzymes, comprising isoforms that vary in sensitivity to calcium, arachidonic acid, and diacylglycerol. PKC isoforms alpha, gamma, and delta are expressed by cerebellar Purkinje cells and neurons in the cerebellar nuclei and vestibular nuclei of the Long-Evans rat. In control rats, these PKCs are distributed symmetrically i...
متن کاملDifferential projections from the vestibular nuclei to the flocculus and uvula-nodulus in pigeons (Columba livia).
The pigeon vestibulocerebellum is divided into two regions based on the responses of Purkinje cells to optic flow stimuli: the uvula-nodulus responds best to self-translation, and the flocculus responds best to self-rotation. We used retrograde tracing to determine whether the flocculus and uvula-nodulus receive differential mossy fiber input from the vestibular and cerebellar nuclei. From retr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of vestibular research : equilibrium & orientation
دوره 19 3-4 شماره
صفحات -
تاریخ انتشار 2009